US009304840B2

a2 United States Patent 10) Patent No.: US 9,304,840 B2
Simsek et al. (45) Date of Patent: Apr. 5, 2016
(54) MESSAGE-BASED MODELING 7,941,299 Bl 5/2011 Aldrich et al.
8,190,417 B2 5/2012 Shachar
: . : 8,689,236 B2 4/2014 Simsek et al.
(71) Applicant: Té‘g MathWorks, Inc., Natick, MA 2002/0013889 Al 1/2002 Schuster et al.
Us) 2004/0230979 Al 112004 Beecroft et al.
. . 2005/0216248 Al 9/2005 Ciolfi et al.
(72) Inventors: Hidayet T. Simsek, Newton, MA (US); 2007/0288885 Al* 12/2007 Brunel etal. 717/104
Vijaya Raghavan,].Srookhne, MA (US); (Continued)
Ramamurthy Mani, Wayland, MA (US)
. . FOREIGN PATENT DOCUMENTS
(73) Assignee: The MathWorks, Inc., Natick, MA
(Us) GB 05216254 5/2007
(*) Notice: Subject. to any disclaimer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. Simulink Model-based and System-Based Design, version 5, 2004,
| pp. 1-488.*
(21) Appl. No.: 14/163,147 (Continued)
(22) Filed: Jan. 24, 2014
(65) Prior Publication Data Primary Examiner — Tuan Dao
US 2016/0011920 A1 Jan. 14, 2016 (74) Attorney, Agent, or Firm — Cesari and McKenna LLP;
Michael R. Reinemann
Related U.S. Application Data
(63) Continuation of application No. 13/117,531, filed on (57) ABSTRACT
May 27, 2011, now Pat. No. 8,689,236.
(60) Provisional application No. 61/349,401, filed on May 4 system al?d method may generate executable block dia-
28, 2010. grams in which at least some of the blocks run in accordance
with message-based execution semantics. A message may
(51) Int.ClL include an input data payload that does not change over time,
GOG6F 9/54 (2006.01) and the message may persist for only a determined time
(52) US.CL interval during execution of block diagram. A message-based
CPC it GOG6F 9/546 (2013.01) execution engine may control execution of message-based
(58) Field of Classification Search blocks in which a source block may generate a message at a
None particular point in time, the message may be sent to one or
See application file for complete search history. more destination blocks triggering execution of those blocks,
. and the message may be destroyed on or after a determined
(56) References Cited time interval. Other execution domains, such as a time-based

or state-based execution domain, may be provided, and the

U.S. PATENT DOCUMENTS . . .
system may implement a hybrid execution model.

5,317,746 A 5/1994 Watanabe
6,519,639 B1* 2/2003 Glasseretal. 709/224
7,313,449 B1 12/2007 Ciolfi et al. 37 Claims, 21 Drawing Sheets

RECEIVE GRAPHICAL MODEL
i

| CREATE ONE OR MORE MESSAGE-BASED

I'\-SOZ
COMPONENTS FOR GRAPHICAL MODEL

|—~—604
I

STORE MESSAGE-BASED COMPONENT IN MEMORY
AND ADD ICON TO GRAPHICAL MODEL 606

!

RECEIVE SPECIFICATION OF ONE OR MORE
MESSAGES TO BE SENT AND/OR RECEIVED BY A 608
COMPONENT OF THE MODEL
RELATIONSHIPS AMONG 610
COMPONENTS OF THE MODEL
'
I
CHECK MESSAGE TYPES FOR MESSAGE SOURCE
AND DESTINATION COMPONENTS 614

| CREATE LIST OF MESSAGE LISTENERS, AND ADD I._mz

RECEIVE SPECIFICATION QF ONE OR MORE
MESSAGE-BASED
DESTINATION COMPONENTS TO THE LIST
EXECUTE GRAPHICAL MODEL

L—me

GOTO
FIG.6B

US 9,304,840 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0098349 Al
2009/0044171 Al*
2009/0132936 Al
2009/0164558 Al
2009/0177779 Al
2009/0204949 Al
2009/0240449 Al
2009/0292518 Al
2010/0049821 Al
2010/0070753 Al*
2011/0296436 Al

OTHER PUBLICATIONS

4/2008 Lin et al.

2/2009 Avadhanula 717/105

5/2009 Anderson et al.

6/2009 Hofmann

7/2009 DeVal et al.

8/2009 Howland et al.

9/2009 Gibala
11/2009 Shachar et al.

2/2010 Oved

3/2010 Kidoetal.cooovvevrnns 713/150
12/2011 Moore et al.

Bagrodia, Rajive I, et al., “A Message-Based Approach to Discrete-
Event Simulation,” IEEE, IEEE Transactions on Software Engineer-
ing, vol. SE-13, No. 6, Jun. 1987, pp. 654-665.

Bringmann, Eckard, “Automated Model-based testing of control
software with TPT,” 2008, pp. 1-19.

Bringmann, Eckard, “Model-based testing of Automotive Systems,”
International Conference on Software Testing, verification and vali-
dation (ICST), 2008, pp. 1-9.

Cleaveland, Rance, et al., “AN Instrumentation-Based Approach to
Controller Model Validation,” Model-Driven Development of Reli-
able Automotive Services. Second Automotive Software Workshop,
ASWSD 2006, Revised Selected Papers Springer-Verlag Berlin,
2008, pp. 1-14.

Heverhagen, Torsten, et al., “A Profile for Integrating Function
Blocks into the Unifiled Modeling Language,” http://www-verimag.
imag.fiyEVENTS/2003/SVERTS/PAPERS-WEB/08-Heverhagen-
FunctionBlockAdapters.pdf, Oct. 20, 2003, pp. 1-19.

Hoffmann, Ph.D., Hans-Peter, “SysML-Based Systems Engineering
Using a Model-Driven Development Approach,” Telelogic, An IBM
Company, Version 1, Jul. 2008, pp. 1-16.

Hooman, Jozef, et al., “Coupling Simulink and UML Models,” http://
www.mbsd.cs.ru.nl/publications/papers/hooman/FORMS04.pdf,
2004, pp. 1-8.

Krahl, David, “Extendsim 7,” IEEE, Proceedings of the 2008 Winter
Simulation Conference, Winter 2008, pp. 215-221.

Krahl, David, et al., “A Message-Based Discrete Event Simulation
Architecture,” IEEE, Proceedings of the 1997 Winter Simulation
Conference, Winter 1997, pp. 1361-1367.

McQuillan, John M., et al., “Some Considerations for a High Perfor-
mance Message-Based Interprocess Communication System,” Bolt
Beranck and Newman, Inc., Jul. 1975, pp. 77-86.

“Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority, or the
Declaration,” International Filing Date: May 27, 2011, International
Application No. PCT/US2011/000964, Applicant: The MathWorks,
Inc., Date of Mailing: Aug. 25, 2011, pp. 1-12.

“Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority, or the
Declaration,” International Filing Date: May 27, 2011, International
Application No. PCT/US2011/000967, Applicant: The MathWorks,
Inc., Date of Mailing: Aug. 26, 2011, pp. 1-12.

“Public Health Information
(PHINMS),” 2009, pp. 1-50.
“Real-Time Workshop: For Use with Simulink-Getting Started,” Ver-
sion 6, The MathWorks, Inc., Jun. 2004, pp. i-iv, 1-1 to 1-20 and 2-1
to 2-30.

“Simulink® 7: User’s Guide,” The MathWorks, Inc., Sep. 2009, pp.
i-xlvi, 1-1to 1-46, 2-1 to 2-44, 3-1 to 3-34, 4-1 to 4-138, 5-1 to 5-30,
6-1to0 6-84, 7-1 to 7-60, 8-1 to 8-26, 9-1 to 9-60, 10-1 to 10-88, 11-1
to 11-30, 12-1 to 12-66, 13-1 to 13-58, 14-1 to 14-28, 15-1 to 15-36,
16-1 to 16-28, 17-1 to 17-46, 18-1 to 18-16, 19-1 to 19-68, 20-1 to
20-32, 21-1 to 21-32, 22-1 to 22-16, 23-1 to 23-10, 24-1 to 24-24,
25-1to 25-12, 26-1 to 26-42, 27-1 to 27-36, 28-1 to 28-26, 29-1 to
29-46, 30-1 to 30-160, 31-1 to 31-32, Glossary-1 to Glossary-2, A-1
to A-4, Index-1 to Index-22.

“Simulink, Model-based and System-based Design”, The
MathWorks, 2004, pp. 1-488.

Traub, Matthias, et al., “Generating Hardware Descriptions from
Automotive Function Models for an FPGA-Based Body Controller:
A Case Study,” http://www.mathworks.com/automotive/
macde2008/ proceedings/day2/04__daimler_ generting hw__de-
scriptions_ with__hdl_coder__papers.pdf, 2008, pp. 1-8.

U.S. Appl. No. 13/117,531, Filed: May 27, 2011 by Hidayet Tunc
Simsek et al. for Message-Based Modeling, pp. 1-62.

“Simulink® Verification and Validation 2: User’s Guide,” The
MathWorks, Inc., Sep. 2007, pp. i-xii, 1-1 to 1-6, 2-1 to 2-58, 3-1 to
3-32, 4-1 to 4-28, 5-1 to 5-66, 6-1 to 6-30, 7-1 to 7-4, 8-1 to 8-56, 9-1
to 9-4, 10-1 to 10-42, A-1 to A-4, and Index-1 to Index-4.
“Creating and Managing Timing Diagrams”, IBM, retrieved from
www.ibm.com on Mar. 29, 2013, 5 pages.

“Creating Communication Diagrams”, IBM, retrieved from www.
ibm.com on Mar. 29. 2013, 12 pages.

“Creating Sequence Diagrams”, IBM, retrieved from www.ibm.com
on Mar. 29. 2013, 24 pages.

“UML Sequence Diagrams”, uml-diagrams.org, retrieved from
http://www.uml-diagrams.org/sequence-diagrams.html on Mar. 29,
2013, 18 pages.

Ciancarini, Paolo, “Exercises on Basic UML Behaviors,” Nov. 2013,
pp. 1-38.

Dumond, Yves, et al., “A Relationship Between Sequence and
Statechart Diagrams,” 2000, pp. 1-6.

Gronmo, Roy, et al., “From UML 2 Sequence Diagrams to State
Machines by Graph Transformation,” Journal of Object Technology,
AITO-Association Internationale pour les Technologies Objets, JOT,
vol. 10, Jun. 2011, pp. 1-22.

Harel, David, et al., “Synthesis Revisited: Generating Statechart
Models from Scenario-Based Requirements,” Formal Methods in
Software and Systems Modeling, LNCS, vol. 3393, Springer-Verlag
Berlin, Heidelberg, Jan. 13, 2005, pp. 1-18.

Latronico, Beth, et al., “Representing Embedded System Sequence
Diagrams as a Formal Language,” Electrical & Computer Engineer-
ing, Carnegie Mellon University, UML, Oct. 2001, pp. 1-23.
U.S.Appl. No. 13/117,859, filed May 27,2011 by Alan J. Moore et al.
for a Message-Based Model Verification, pp. 1-62.

Whittle, Jon, et al., “Generating Statechart Designs From Scenarios,”
Jun. 2000, pp. 1-10.

Network Messaging System

* cited by examiner

US 9,304,840 B2

Sheet 1 of 21

Apr. 5,2016

U.S. Patent

Ll "OlId
801
phl
INYA
o:(_ JAIYA WNIAIN F18YAONTY OIN »SId
<
'\ i
< \ .
o I Y
y v v
INIWI13 —
002~ INIWNOXIANT 9NISSID0Nd 07} —
9NIT3Q0N T3IAITHOIH ! P,
204 8 <P, /
zzi~] W3LSAS ONILYY3dO
w01 e [
\
e 901" 9l
00}

US 9,304,840 B2

Sheet 2 of 21

Apr. 5, 2016

U.S. Patent

¢ Old
- 22T
INIONT FOVHYILNI | 2.0 o010
¥OLYYINIS 140dTY L 0zz
¥3qing
INIONI NOILYOIR3A ~| e 12w
812 .
JOVHIOV INIONT
3INIONT
39VYMOVd SSY10 goz~] NOILNJ3X3 L||V
Ssyi0 | N INaNodioo | 9N NIIORS 1300 S1InS3Y
3dAL a3sve 35YRSIN NOLLYININIS
-39YSSIN -39YSSIN W3LSAS
a0z~ ONITIAOW
Q3Sve-3LV1S
NOILONYLSNOD plz~] 3ANION3 0£2
103r60 Q3SVE-39YSSIN [pzz | NOILYOVLONd nashs | k)
ONITIAON
W3LSAS ONITICON 3SYE-FOVSSIN 702 g3sve-aniL mmmmu |
200~ INIWNOYIANT ONITIAON T3AFTHOIH
o0z—

US 9,304,840 B2

¢ Old

743 2ze 02¢ 81€ 9ie 7ie 4% 0L€
3) \ 3 \ \ \ \

Sheet 3 of 21

HOLVYINID
iNaagoL | L vnaisoL || waman || aamoay ¥3aTng
d3AY3S | | INIO | T 39vssaw | | 3ovssaw || 3ovssaw | | 3ovssaw | | FOVSSIN | | 39vssan

Apr. 5, 2016

U.S. Patent

a1Q0H3d
A A A A A A A A
d3AY3S/LNAITO AVMALYO MNIS = [GIALENED)
/ / ? /
80¢ 90¢ v0€ c0¢

US 9,304,840 B2

Sheet 4 of 21

Apr. 5, 2016

U.S. Patent

v Old
4% 9y 1444 4%% 0l
\ \ \ \ \
ainssaud :jeoy | Jeunjessdws; 1ol | ONIANOLS3IY
OSNIS INO Mo | | N3 1N | | Suions
J4NSS3dd FHNLVHIdNTL| JHITIOHINOD
A A) A A A
apooAianooal :Bul)s S0V apoobuiusem :buis 0¥ apoouous :Bulys b0V
HOMYT T18vH3IN00TY ONINSYM Youua Wivd
A A A
obessaw :Buuys
<o (02}
oov\\

US 9,304,840 B2

Sheet 5 of 21

Apr. 5, 2016

U.S. Patent

G Old
aatoL | ovi4 | w3aiNaal JdAL
QvO1Avd L | anvaA 3OVSSIN J9VSSIN
/ / / / /
0lS 805 908 b0S 208
00s—"

U.S. Patent Apr. 5, 2016 Sheet 6 of 21 US 9,304,840 B2

RECEIVE GRAPHICAL MODEL

D
QO
N

Y

CREATE ONE OR MORE MESSAGE-BASED
COMPONENTS FOR GRAPHICAL MODEL

(o))
(a)
~

Y

STORE MESSAGE-BASED COMPONENT IN MEMORY
AND ADD ICON TO GRAPHICAL MODEL

(@)
(]
»

Y

RECEIVE SPECIFICATION OF ONE OR MORE
MESSAGES TO BE SENT AND/OR RECEIVED BY A
COMPONENT OF THE MODEL

608

Y

RECEIVE SPECIFICATION OF ONE OR MORE
MESSAGE-BASED RELATIONSHIPS AMONG
COMPONENTS OF THE MODEL

610

Y

CREATE LIST OF MESSAGE LISTENERS, AND ADD
DESTINATION COMPONENTS TO THE LIST

D
—_—
N

Y

CHECK MESSAGE TYPES FOR MESSAGE SOURCE
AND DESTINATION COMPONENTS

(@)
—_~
-

\

EXECUTE GRAPHICAL MODEL

T T T T T T T

(@]
-~
o

Y
GOTO
FIG.6B

FIG. 6A

U.S. Patent Apr. 5, 2016 Sheet 7 of 21 US 9,304,840 B2

FROM
FIG.6A

\

CREATE SORTED-ORDER OF TIME-BASED ~_ 618
COMPONENTS OF MODEL

Y

RUN DEFAULT TRANSITIONS OF ONE ORMORE |\ 69
STATE-BASED PORTIONS OF THE MODEL

) 4

BEGIN EXECUTING TIME-BASED COMPONENTS
ACCORDING TO THE SORTED-ORDER 622

\i

IN RESPONSE TO TRIGGERING EVENT FOR A STATE-
BASED PORTION OF THE MODEL, SUSPEND ~— 624
EXECUTION OF TIME-BASED COMPONENTS

\ i

EXECUTE TRIGGERED STATE-BASED PORTION OF |~ _ 606
THE MODEL TO COMPLETION

4

RESUME EXECUTION OF TIME-BASED COMPONENTS
FROM SUSPENSION POINT FOLLOWING COMPLETION 628
OF EXECUTION OF STATE-BASED PORTIONS OF THE

MODEL

Y

EXECUTE STATE-BASED PORTION THAT
REGISTERED FOR EXECUTION DURING TIME STEP [-630

y

A
GO TO
FIG.6C

FIG. 6B

U.S. Patent Apr. 5, 2016 Sheet 8 of 21 US 9,304,840 B2
FROM
FIG.6B
Y
SEND GENERATED MESSAGE, INCLUDING PAYLOAD, 632
TO ONE OR MORE DESTINATION COMPONENTS
\
EXECUTE COMPONENT TRIGGERED BY RECEIPT OF 634
MESSAGE
\
START TIMER FOR MESSAGE |'\636
\
DESTROY MESSAGE WHEN IT REACHES THE END OF
ITS LIFETIME 638
Y
RESUME EXECUTION OF TIME-BASED COMPONENTS
FROM SUSPENSION POINT FOLLOWING COMPLETION ~— 640

OF EXECUTION OF MESSAGE-BASED PORTIONS OF
THE MODEL

Y

EXECUTE STATE-BASED PORTION THAT
REGISTERED FOR EXECUTION DURING TIME STEP

I’\- 642

FIG. 6C

US 9,304,840 B2

Sheet 9 of 21

Apr. 5, 2016

U.S. Patent

- 004

Y. 9Old grod | wod |2 OIS
%LG) fpeay
WL ueg
(2 2| .Vvul
90, it
\ uaip 0LL ¢l
s (gwhisod ‘nBis=sjw :uo
ADs Buniem nfis e
9 s K Nfgﬁ . fesl
o, sz’ 4
@Af Yo0|gIaNB00EBESSI| -~ BYGL [ezs)
O) B0G. i~ S M S .
|t
ony |~0E. @mm
F) 5 > 19 [1v]
. ¥oo|gloiessuscysbessaly =
> Yooigayngabessaly
.V el aa
© w// T oot 01 5 /Mwe =
eO0PL GOV chl el L ~1®|
/ Quoed zispIobessaw |©
| oved”zigb3ehessew
/ E @ [Fumon] | I 4 © -0 H-0[E 0|« E-
[dioH |00 opo7 SIsAjeuy uoneinwig welbeid Aeidsig maIA Wp3 9lq

Judled zisb3abessow By

US 9,304,840 B2

Sheet 10 of 21

Apr. §, 2016

U.S. Patent

d. 9ld
glansigdaigpexiq
¢l
waIsAsgng uonavy)|
1IN0 Lur
uES {}ospo _AN
o sls 4
.F 4 1o M R osfe LN [
- | WaISASONg LoNoY)| r={(0=~Ln)} \
5 i
0cL cul| |- i
n m
WOy le— |
{}) m
7 1 !
A
Y
®
A
\
[E =i \

US 9,304,840 B2

Sheet 11 of 21

Apr. 5, 2016

U.S. Patent

8 'Old
2 SLEENS ~—— 68
wmw)u\momnz sooos R — 7
sea~—_(sg ocy—, (0000E) 9PV 1—)¢8
vmwxl\msi/m‘ (00002) 3Py -—0€8
078 —— soo L)epnily 928
p79] Jelieauod sng || 700
n FRBRWIglole B |08
(X]] 90008 80ESSO|\ Shg @&
S10jenjoy Jg||04u0)
asesjpySUB | U} [<—] Syue) esesjey sng $I0SUSS 708
0JJu0 1
L%w\,_o ases|oyabeiguo; [<— abeigesesioy 918 By obessal L Ala\
‘T _%m%oo_\w_u dwngjandud) [«—] fenduing wommwwm_\,_zwommmwo_z ogm_w__\d MMHMM_\,_ LoIsog
nlg apogepojy {=—] apogspon A9 fewouy je—4 Alewouy UoBSOd (T
9pOJHOQY < SPOJHOQY f / / 08
5 5 078 808 908
18 018
008

U.S. Patent Apr. 5, 2016 Sheet 12 of 21 US 9,304,840 B2

RECEIVE REQUEST FOR AN OBSERVER BLOCK |—\,902

Y

RECEIVE DESIGNATION OF ONE OR MORE MESSAGE-l_¥904

BASED CONNECTIONS TO BE ASSOCIATED WITH THE
OBSERVER BLOCK

Y

PROVIDE OBSERVER BLOCK WITHIN GRAPHICAL |'\906

MODEL

Y

EXECUTE THE MODEL |'\,903

\

DURING MODEL EXECUTION, MONITOR SENDING

AND RECEIVING OF MESSAGES ACROSS THE ONE |~—910

OR MORE DESIGNATED MESSAGE-BASED
CONNECTIONS

Y

UPDATE OBSERVER BLOCK DURING EXECUTION AS |,\1912

EACH MESSAGE IS GENERATED, SENT AND/OR
RECEIVED

y

\
PROVIDE INFORMATION WITHIN THE OBSERVER |7¥
914

BLOCK CONCERNING EACH MESSAGE AS IT IS
GENERATED, SENT AND/OR RECEIVED

Y

GO.TO
FIG.9B

FIG. 9A

U.S. Patent Apr. 5, 2016 Sheet 13 of 21 US 9,304,840 B2

FROM
FIG.9A

Y

RECEIVE REQUEST FOR A REPORT

Y

PROVIDE INFORMATION CONCERNING MESSAGES
GENERATED DURING EXECUTION OF MODEL TO
REPORT GENERATOR

918

Y

CREATE REPORT OF ONE OR MORE MESSAGES
GENERATED DURING MODEL EXECUTION

\

PROVIDE REPORT TO OUTPUT DEVICE

922

\

SAVE REPORT TO MEMORY

0 T

FIG. 9B

US 9,304,840 B2

Sheet 14 of 21

Apr. 5, 2016

U.S. Patent

0L 9Ol
S2g==) 90}
Spigesil, UNRWOW L gz
s0z==1u (0000%) PV L _pz0}
L apnyl !
(581 == (0000€) spnily \“\Imme
sgh==hg (00002) PNMIY +——2Z0}
020i—— (00004} 3prinly ——8L0}
9,01~ +elloauod g Lp10
[oLy Juoqy vov[pogy] voay S04 [1ogy oN | 201
L~
oo |FA|wS—]dsEEPI2Q
djoH_sexy [eubiS dnoi Jp3 a|id
3= i (Sobessaw Snaq) Jopjing obessop @
sJojen)oy 19]|01u0D)
oSeoEYUB | LD} |<—] SyuE | osesjoy sounog abessaly
|0UODI0I0 ases|oyabeiguo) [«—] abeigases|oy 0L01 \ !
@T [0JUODIOION dwngjenjuo; |«—] |pn4dwing mmmmwwms_tla | ~—
9001 aponapoly <] sponspopy I -
8POJLOQY [<—] 8poJLoqY /
P, p) 8001
000L—" 001 2001

U.S. Patent Apr. 5, 2016 Sheet 15 of 21 US 9,304,840 B2

RECEIVE REQUEST FOR A MESSAGE SOURCE BLOCKl’\rHOZ

Y

CREATE MESSAGE SOURCE BLOCK, AND PROVIDE |’\'1104

GENERATOR BLOCK WITHIN GRAPHICAL MODEL

Y

RECEIVE DESIGNATION OF ONE OR MORE |'\—1106

DESTINATION BLOCKS FOR MESSAGES GENERATED
AND SENT BY MESSAGE SOURCE BLOCK

Y

RECEIVE INFORMATION SPECIFYING ONE OR MORE 1108
MESSAGES TO BE GENERATED AND SENT BY
MESSAGE SOURCE BLOCK

Y

EXECUTE THE MODEL L
1110

Y

GENERATE AND SEND ONE OR MORE MESSAGES F
1112

FROM THE MESSAGE-SOURCE BLOCK ACCORDING
TO THE SPECIFICATION

Y

RECEIPT OF ONE OR MORE MESSAGES MAY TRIGGER
EXECUTION OF ONE OR MORE DESTINATION BLOCKS 1114

FIG. 11

US 9,304,840 B2

Sheet 16 of 21

Apr. 5, 2016

U.S. Patent

¢l 9Ol
HATAS N —~——G¢C|
S0Z==1l Aoooos kLI —)
A apnyl _
. (0000€) apnlY x"\lmmﬁ
STh==Il., (00002) ePraAlY 1—222!
022 I~ 88 1) 8pnY “r)m:ﬁ
A
92—t st sng [—rizl
0 FBBRBWI(glolo B et
XL] 9d00g abessa|\ sng &
89In0g abessaly sng SI0SUSS . vzl
i | Bsiy abessopy A|@\
“_ A|_.“ soBesss apniny spniy L
i 9 A Bsy obessoy uonisod
A%4’ Alewouy Aewouy uoiisod AJCU/
/ / / 20cl
oLcl 80¢1 20¢l
00z, —"

U.S. Patent Apr. 5, 2016 Sheet 17 of 21 US 9,304,840 B2

RECEIVE REQUEST FOR A MESSAGE SINK BLOCK 1302

—

Y

RECEIVE DESIGNATION OF ONE OR MORE SOURCES

OF MESSAGES TO BE RECEIVED BY MESSAGE SINK [~-1304
BLOCK
Y
PROVIDE MESSAGE VIEWER BLOCK WITHIN 1206
GRAPHICAL MODEL
A J
EXECUTE THE MODEL |—L1308

\

DURING MODEL EXECUTION, MONITOR MESSAGES
SENT BY ONE OR MORE DESIGNATED SOURCES

1310

T

Y

UPDATE MESSAGE VIEWER BLOCK DURING
EXECUTION AS EACH MESSAGE IS RECEIVED AT
MESSAGE SINK BLOCK

1312

S

Y

PROVIDE INFORMATION WITHIN THE MESSAGE
VIEWER BLOCK CONCERNING EACH RECEIVED
MESSAGE

1314

L—

Y
GO TO
FIG.13B

FIG. 13A

U.S. Patent Apr. 5, 2016 Sheet 18 of 21 US 9,304,840 B2

FROM
FIG.13A

Y

RECEIVE REQUEST FOR A REPORT |'\«1316

Y

PROVIDE INFORMATION CONCERNING ONE OR MORE
MESSAGES RECEIVED DURING EXECUTION OF MODEL 1318
TO REPORT GENERATOR

Y

CREATE REPORT OF THE ONE OR MORE MESSAGES 139
RECEIVED DURING MODEL EXECUTION 320

Y

PROVIDE REPORT TO OUTPUT DEVICE |—_,1322

Y

SAVE REPORT TO MEMORY I"~1 324

FIG. 13B

US 9,304,840 B2

Sheet 19 of 21

Apr. 5, 2016

U.S. Patent

Yl "9l 0/bl \Tb ' (S0} =>Je-mONSwn} !
a9hL _i, uelesespy 1 (SG =>)e-MmoNBWI} |
1 obejgesesisy (s =>le-moNow} !
9y enadung . O bopl
“ i { ewouy i
! NONOWRIE ha A)
L-00F| 8oy~ (000001=<€)3pMlY |.gcp)
SI01eNY (G| 19]|04U0] LSyl sng L~0Svl
siojenoy J9]j0Au0)
9SBATYDIE LU} (= SiuB 5B sng 87l siosusg bOp)
_w%woo asesjoyebeiSuo) [+——y] ebeigesesiey Bsiy abessap HAI&
RN 1oauog £erl sprnly (<9 epniy
@TLQO_\,_ dwingjen-ud nNNSV lpndwng sabessepy sobessoly By aBessaly UoNISOd
" 3PODRPON [+ 5 3POORPOI Aleuiouy Alpwouy S;_moaﬁ,@
8POJUOQY [<——y—] SPOJHOQY / / 20vl
y 0crl D) 417 8071 9yl 0yl
00 L—" bl kbl
SL=>| MO mE_ - ; > vyl
o P TR _ﬂ\;ozme_g-:
Crovtnonew s WY ppp =t o gy
L-Obpl 8EyL~ ~9EY)
B|0AUCT L-pEY] sng L~eevl SI0SURS L~0C|

U.S. Patent

Apr. 5, 2016 Sheet 20 of 21

US 9,304,840 B2

RECEIVE REQUEST FOR A SCENARIO BLOCK

1502

Y

PROVIDE SCENARIO BLOCK WITHIN GRAPHICAL
MODEL

1504

Y

RECEIVE DESIGNATION OF ONE OR MORE MESSAGE-
BASED CONNECTIONS AND/OR ONE OR MORE
MESSAGE-BASED BLOCKS ASSOCIATED WITH

SCENARIO BLOCK

1506

Y

RECEIVE SPECIFICATION OF INTERACTION,
INCLUDING ONE MORE CONSTRAINTS ON EXPECTED
MESSAGES

1508

Y

RECEIVE ONE OR MORE ACTIONS TO BE TAKEN IF
ACTUAL MESSAGES ARE NOT EQUIVALENT TO
SPECIFIED MESSAGES AND/OR INTERACTION

1510

Y

EXECUTE THE MODEL

1512

h 4

DURING MODEL EXECUTION, MONITOR MESSAGES
ASSOCIATED WITH SCENARIO BLOCK

1514

Y
GO.TO
FIG.15B

FIG. 15A

U.S. Patent Apr. 5, 2016 Sheet 21 of 21 US 9,304,840 B2

FROM
FIG.15A

Y

COMPARE ACTUAL MESSAGES WITH EXPECTED |\ 4546
MESSAGES

ACTUAL MESSAGES
EQUIVALENT TO EXPECTED
MESSAGES?

15207

ACTUAL MESSAGES
MEET THE ONE OR MORE
CONSTRAINTS?

NO

1524
1 5(32

MODEL EXECUTES TO COMPLETION

15622
I

PERFORM SPECIFIED ACTION

A

1526
4

> PERFORM SPECIFIED ACTION

FIG. 15B

US 9,304,840 B2

1
MESSAGE-BASED MODELING

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of application Ser.
No. 13/117,531, filed May 27, 2011 by Hidayet Tunc Simsek
et al. for MESSAGE-BASED MODELING, now U.S. Pat.
No. 8,640,145, which application claims the benefit of U.S.
Provisional Patent Application Ser. No. 61/349,401, which
was filed on May 28, 2010, by Alan Moore et al., for a
MESSAGE BASED TRACES AND VERIFICATION,
which applications are hereby incorporated by reference in
their entireties.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention description below refers to the accompany-
ing drawings, of which:

FIG. 1 is a schematic illustration of a data processing
system,

FIG. 2 is a partial, functional diagram of a high-level mod-
eling environment;

FIG. 3 is a schematic illustration of a class hierarchy of
message-based components;

FIG. 4 is a schematic illustration of a class hierarchy of
message types;

FIG. 5 is a schematic illustration of a data structure for
storing data elements of a message;

FIGS. 6 A-6C are partial views of a flow diagram of exem-
plary processing that can be used in accordance with an
embodiment of the invention;

FIG. 7 is a smaller scale view indicating the positions of
FIGS. 7A and 7B to form a whole view;

FIGS. 7A and 7B are partial views of an illustration of a
graphical model having executable semantics;

FIG. 8 is; an illustration of a graphical model having
executable semantics;

FIGS. 9A and B are partial views of a flow diagram of
exemplary processing that can be used in accordance with an
embodiment of the invention;

FIG. 10 is an illustration of a graphical model having
executable semantics;

FIG. 11 is a flow diagram of exemplary processing that can
be used in accordance with an embodiment of the invention;

FIG. 12 is an illustration of a graphical model having
executable semantics;

FIGS. 13A and B are partial views of a flow diagram of
exemplary processing that can be used in accordance with an
embodiment of the invention;

FIG. 14 is an illustration of a graphical model having
executable semantics; and

FIGS. 15A and B are partial views of a flow diagram of
exemplary processing that can be used in accordance with an
embodiment of the invention;

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Overview

Exemplary embodiments can be used for generating
executable block diagrams in which at least some of the
blocks run in accordance with message-based execution
semantics. Each message may be an instance of a message
type, and may include a payload comprising one or more data
elements that do not change over time. A message may be

15

25

30

35

40

45

50

55

60

2

generated at a particular point in time by a source block of the
diagram, and may persist for a determined time interval.
Message types may be organized in one or more class hier-
archies. In particular, a plurality of base message types may
be defined, and for each base message type there may be one
or more derived message types. Through the organization of
the class hierarchy, a message-based block capable of receiv-
ing a base message type may also be capable of receiving any
of'the message types that are derived from that base message
type. A message-based block capable of receiving a particular
derived type of message, however, may not be capable of
receiving the corresponding base message type.

A message-based modeling system, which may be
included within a high-level modeling environment, may sup-
port message-based functionality in the block diagram. The
system may include a library of pre-defined graphical blocks
configured to generate and send messages, and to receive and
process messages. The library of message-based blocks may
be organized as a class hierarchy. The modeling environment
may include a graphical editor that provides a canvas in which
a user may construct a block diagram. Each message-based
block may have one or more message ports for sending and
receiving messages. In response to the message ports of
selected blocks being interconnected, such as through mes-
sage-based connections extending from source ports to des-
tination ports, the system may establish message-based rela-
tionships among the interconnected blocks.

The system may further include a propagation engine that
checks the message types among the interconnected mes-
sage-based blocks of the diagram. This process may be per-
formed as part of a compilation of the block diagram. Spe-
cifically, the propagation engine may determine whether a
message type expected by a destination message-block is
compatible with the message type generated by the source
message-block. For example, ifa destination block expects to
receive a message of a base message type as provided in the
class hierarchy, and the source block generates either the
specified base message type or a message type that is derived
from the specified base message type, then the propagation
engine may determine that the message-based relationship is
valid. If the destination block expects a different base or
derived message type than the one generated by the source
block, or the destination block expects a derived message type
and the source generates a base message type, then the propa-
gation engine may determine that the message-based rela-
tionship is not valid, and may issue a compilation error.

The system may also include a message-based execution
engine that controls the execution of the message-based
blocks in the diagram. More specifically, during execution, a
source block generates a message at a particular point in time.
The message-based execution engine may maintain the mes-
sage for a determined time interval. In addition, the execution
engine may send the message to one or more destination
blocks, triggering the execution of the one or more destina-
tion blocks, and the execution engine may control the pro-
cessing of the message by the one or more destination blocks.

In an embodiment, the high-level modeling environment
may include systems that support other execution domains,
such as a time-based execution domain. In addition, the mes-
sage-based system may cooperate with such a time-based
execution system environment to implement a message/time-
based hybrid execution model. The time-based system may
include a library of time-based blocks, and selected time-
based blocks may be added to the block diagram. A time-
based block describes a dynamic system of equations that
defines time-based relationships between signals and state
variables. Signals represent quantities that change over time,

US 9,304,840 B2

3

and may have values at all points in time. The relationships
between signals and state variables may be defined by the set
of equations represented by the time-based blocks. Time-
based blocks may include signal ports that may be intercon-
nected with signal-based connections. The source of a signal
corresponds to the block that writes to the signal during the
evaluation of the block’s equations, and the destination of the
signal is the block that reads the signal during the evaluation
of the destination block’s equations.

The time-based execution engine executes the time-based
blocks in the diagram by evaluating the relationships between
signals and state variables over time beginning at a start time
and continuing to a stop time. Each evaluation of the relation-
ships may be referred to as a time step.

As mentioned, the message-based system and the time-
based execution engine may cooperate to implement a hybrid
environment. In particular, the time-based execution engine
may organize the blocks into a sorted order, which refers to
the order in which the blocks’ operations or methods (e.g.,
execution methods), are invoked. The time-based blocks are
then executed according to the sorted order. When a message
is generated within the block diagram, the execution of the
time-based blocks may be suspended, and the message may
be sent to one or more destination blocks. The one or more
destination blocks may then receive and process the message.
When the processing of the message by the one or more
destination blocks is complete, execution of the time-based
blocks according to the sorted order may resume.

The message-based system may also include a verification
engine. The verification engine may support a library con-
taining one or more verification blocks. Instances of the veri-
fication blocks may be added to the block diagram to evaluate
the operation of message-based blocks. The types of verifi-
cation blocks may include an observer type, a message sink
type, a generator type, and a scenario type. The observer
block may be used to visualize a set of messages, referred to
as a trace, generated by one or more selected message-based
blocks of the block diagram. The set of messages of the trace
may be ordered in time between a start time and an end time
by the observer block. The observer block may be a floating
block within the block diagram, and it may be associated with
amessage-based connection. The message sink block may be
directly connected to a message-based block, and may be
used to visualize a trace generated by that message-based
block. The generator block may be used to represent an exter-
nal source of messages to the block diagram. The generator
block may be connected to one or more message-based
blocks as a source, and configured to generate one or more
messages or traces that may then be received and processed
by the one or more message-based blocks to which the gen-
erator block is connected. The scenario block may be used to
define valid and invalid traces. It may also or alternatively be
used to define one or more constraints on one or more mes-
sages or traces. For example, temporal constraints may be
defined on one or more messages, or between two or more
messages. The scenario block may be associated with one or
more message-based connections in the block diagram whose
messages may form a runtime trace to be evaluated. The
scenario block may compare the defined valid and invalid
traces, and the one or more constraints, to the runtime trace
produced during execution of the block diagram. The sce-
nario block may be further configured to take one or more
actions if one or more of the runtime traces is not equivalent
to the defined valid traces, or the runtime traces are equivalent
to the defined invalid traces. The scenario block may also take
a specified action if the one or more constraints are not satis-
fied.

10

15

20

25

30

40

45

50

55

60

65

4

FIG. 1 is a schematic illustration of a computer or data
processing system 100 for implementing and utilizing an
embodiment of the invention. The computer system 100
includes one or more processing elements, such as a process-
ing element 102, a main memory 104, user input/output (1/O)
device 106, a data storage unit, such as a disk drive 108, and
aremovable medium drive 110 that may all be interconnected
by a system bus 112. The computer system 100 may also
include a communication unit, such as a network interface
card (NIC) 114. The user I/O device 106 may include a
keyboard 116, a pointing device, such as a mouse 118, and a
display 120. The main memory 104 may store a plurality of
libraries or modules, such as an operating system 122, and
one or more applications running on top of the operating
system 122, including a high-level modeling environment
200.

The removable medium drive 110 may accept and read a
computer readable medium 126, such as a CD, DVD, floppy
disk, solid state drive, tape, flash memory or other medium.
The removable medium drive 110 may also write to the com-
puter readable medium 126.

Suitable computer systems include personal computers
(PCs), workstations, laptops, tablets, palm computers and
other portable computing devices, etc. Furthermore, exem-
plary processing elements include single or multi-core Cen-
tral Processing Units (CPUs), Graphics Processing Units
(GPUs), Field Programmable Gate Arrays (FPGAs), Appli-
cation Specific Integrated Circuits (ASICs), etc. Nonetheless,
those skilled in the art will understand that the system 100 of
FIG. 1 is intended for illustrative purposes only, and that the
present invention may be used with other computer systems,
data processing systems or computational devices. The
present invention may also be used in a networked, e.g.,
client-server, computer architecture, or a public and/or pri-
vate cloud computing arrangement.

Suitable operating systems 122 include the Windows series
of operating systems from Microsoft Corp. of Redmond,
Wash., the Linux operating system, the MAC OS® series of
operating systems from Apple Inc. of Cupertino, Calif., and
the UNIX® series of operating system, among others.

A user or developer, such as an engineer, scientist, pro-
grammer, etc., may utilize the keyboard 116, the mouse 118,
and the display 120 to operate the high-level modeling envi-
ronment 200, and construct or open one or more models of a
system that is being designed. The model, which may have
executable semantics, may represent a real-world dynamic
system that is being modeled, simulated, and/or analyzed by
the user.

FIG. 2 is partial block diagram of an embodiment of the
high-level modeling environment 200. The environment 200
may include a message-based modeling system 202, and one
or more additional modeling systems, such as a time-based
modeling system 204, and a state-based modeling system
206. The environment 200 also may include a model execu-
tion engine 208, a model builder 210, and a clock source, such
as clock 212. The message-based modeling system 202 may
include a plurality of components or modules. In particular, it
may include a propagation engine 214, a message-based
execution engine 216, a verification engine 218, a report
generator 220, and an interface engine 222. The system 202
may also include an object constructor 224 that may access
one or more class packages, such as message-based compo-
nent class package 226, and a message-type class package
228.

In an implementation, high-level modeling environment
200 may receive inputs by a user as the user creates, edits,
revises, and/or opens one or more models, as indicated by

US 9,304,840 B2

5

arrow 230. The model execution engine 208 in cooperation
with the modeling systems 202, 204 and 206 may execute the
model generating one or more results that may be presented to
the user, as indicated by arrow 232. A model may include a
plurality of portions each operating according to a different
execution domains. For example, a first portion may operate
according to message-based semantics, a second portion may
operate according to time-based semantics, and a third por-
tion may operate according to state-based semantics.

In an embodiment, a graphical model may be executable
such that the model receives one or more inputs, processes
those inputs, and produces one or more outputs.

In an embodiment, a suitable high-level modeling environ-
ment includes the MATLLAB® technical computing environ-
ment from The MathWorks, Inc. of Natick, Mass. The high-
level modeling environment may thus operate at a level that is
even higher than other well-known programming languages,
such as the C, C++, and C# programming languages. A suit-
able time-based modeling system includes the SIMULINK®
environment from The MathWorks, Inc. A suitable state-
based modeling system includes the Stateflow charting tool
from The MathWorks, Inc.

It should be understood that other modeling tools in addi-
tion to or in place of the time-based modeling system 204
and/or the state-based modeling system 206 may be used in
the environment 200. Other such modeling tools include data-
flow systems, such as the LabVIEW programming system
from National Instruments Corp. of Austin, Tex., and the
Visual Engineering Environment (VEE) from Agilent Tech-
nologies, Inc. of Santa Clara, Calif., physical modeling sys-
tems, such as The Simscape product from The MathWorks,
Inc., Unified Modeling Language (UML) systems, and Sys-
tems Modeling Language (SysML) systems, among others.
In addition, a lower level programming language, such as the
C, C++, and C# programming languages, among others, may
also be used to create one or more models or model portions.

The propagation engine 214, message-based execution
engine 216, verification engine 218, report generator 220,
interface engine 222, message-based object constructor 224,
and class packages 226, 228 may each comprise registers and
combinational logic configured and arranged to produce
sequential logic circuits. In an embodiment, the propagation
engine 214, message-based execution engine 216, verifica-
tion engine 218, report generator 220, interface engine 222,
message-based object constructor 224, and class packages
226, 228 may be implemented through one or more software
modules or libraries containing program instructions pertain-
ing to the techniques described herein. The software modules
may be stored on main memory 104 and/or computer read-
able media, such as computer readable medium 126, and
executable by one or more processing elements, such as pro-
cessing element 102. Other computer readable media may
also be used to store and execute these program instructions.
In alternative embodiments, various combinations of soft-
ware and hardware, including firmware, may be utilized to
implement the present invention.

In an embodiment, the message-based components of a
graphical model as well as the messages generated during
execution of the model may be objects, and these objects may
be defined by creating “classes” which are not objects them-
selves, but which act as templates that instruct the constructor
224 how to construct an actual component and message
object. A class may, for example, specify the number and type
of'data variables and the steps involved in the functions which
manipulate the data. The object constructor 224 may use the
corresponding class definition and additional information,
such as arguments provided during object creation, to con-

10

15

20

25

30

35

40

45

55

60

65

6

struct the object. Likewise, objects may be destroyed by a
special function called a “destructor”. Objects may be used by
manipulating their data and invoking their functions.

FIG. 3 is a schematic illustration of an exemplary class
hierarchy 300 of message-based components. Instances of
objects defined in the class hierarchy 300 may be constructed
for use in a graphical model. The class hierarchy 300 may
include one or more base classes, such as a Generator class
302, a Sink class 304, a Gateway class 306, and a Client/
Server class 308. In addition, one or more of the base classes
may include one or more derived classes, which may also be
referred to as sub-classes. For example, the Generator base
class 302 may include a Message Builder subclass 310 and a
Period Message Generator subclass 312. The Sink base class
may include a Message Receive subclass 314 and a Message
Viewer subclass 316. The Gateway base class 306 may
include a Message to Signal subclass 318 and a Message to
Event subclass 320. The Client/Server base class 308 may
include a Client subclass 322 and a Server subclass 324.

It should be understood that other, possibly more complex,
class hierarchies may be provided. For example, additional
base classes may be provided, and one or more of the sub-
classes may include subclasses of its own, and so on.

FIG. 4 is a schematic illustration of an exemplary class
hierarchy 400 of message types, such as error messages. The
hierarchy 400 may include an Error base class 402. The Error
base class 402 may have one string property named “mes-
sage”. The Error base class 402 may include a plurality of
derived classes, such as a Fatal Error subclass 404, a Warning
subclass 406, and a Recoverable Error subclass 408, which
may define other class specific properties. The Fatal Error
subclass 404 may have one string property named “error-
code”. The Warning subclass 406 may have one string prop-
erty named “warningcode”. The Recoverable Error subclass
408 may have one string called “recoverycode”. Furthermore,
the Fatal Error subclass 404 may have a plurality of derived
classes, such as an Engine Stalled subclass 410, a Controller
Not Responding subclass 412, a Temperature Error subclass
414, and a Pressure Error subclass 416. The Temperature
Error subclass 414 may have one floating point property
called “temperature”, and the Pressure Error subclass 416
may have one floating point property called “pressure”. The
Recoverable Error subclass 408 may have one derived class,
such as a One Sensor Not Working subclass 418.

While the message types are referred to as classes, in an
embodiment, they do not have any methods. Instead, the
specialization of the message classes may add new properties,
i.e., data members, only.

In an embodiment, an instance of a message object may
include one or more data elements. FIG. 5 is a schematic
illustration of a data structure 500 representing the data ele-
ments of an instance of a message object. The data structure
500 may be organized into a plurality of fields and sub-fields
each storing particular information. For example, the data
structure 500 may include a message type field 502, a mes-
sage identifier (ID) field 504, a valid flag 506, a time to live
(TTL) field 508, and a payload field 510. The message type
field 502 may store information that indicates the particular
type of message, the message ID field 504 may store an
identifier that uniquely identifies the message, the valid flag
506 may indicate whether the message is valid or invalid, the
TTL field 508 may store information indicating how long the
message should be maintained, and the payload field may
store information associated with the message that was gen-
erated by the message source and that may be used by one or
more message destinations.

US 9,304,840 B2

7

It should be understood that the data structure may include
additional or fewer fields. In addition, the payload field 510
may be organized into a plurality of sub-fields.

In another embodiment, message-based components and/
or messages may be instances generated from types, instead
of' being objects generated from classes. Those skilled in the
art will understand that other implementations of message-
based components and/or messages may be utilized.

FIGS. 6 A-C are partial views of a flow diagram illustrating
exemplary processing for practicing an embodiment of the
invention. The high-level modeling environment 200 may
receive inputs from a user constructing or opening a model, as
indicated at block 602. Environment 200 may support the
creation of models through graphical, textual, or a combina-
tion of graphical and textual inputs. The user may operate and
interact with environment 200 through the user /O 106, such
as the keyboard 116, mouse 118, and display 120. For
example, the environment 200 and/or one or more of the
message-based modeling system 202, the time-based model-
ing system 204, and the state-based modeling system 206
may present one or more model editor windows on the display
120. The model editor may include a plurality of graphical
elements, such as a menu bar, a tool bar, and a canvas. In
addition, the message-based modeling system 202, the time-
based modeling system 204, and the state-based modeling
system 206 may each provide a library browser window or
palette that presents a plurality of component types. The user
may select one or more component types from the library
browsers or palettes, and place respective ones of those com-
ponents on the canvas. The user may then connect the com-
ponents, e.g., with connections, that may appear as lines or
arrows on the canvas, thereby establishing message-based,
mathematical time-based, state-based, dataflow, or other rela-
tionships among the components placed onto the canvas.

The environment 200 may also support the creation of a
model programmatically.

In an embodiment, a user may select one or more types of
message-based components from the library browser. In
response, the constructor 216 may access the component
class package 226, and create an object instance of the
selected type, as indicated at block 604. The object instance
may be stored in memory, such as main memory 104, and an
icon, such as a block, may be added to the canvas, as indicated
at block 606.

The user may configure one or more of the components of
the model to generate and/or receive a message, as indicated
at block 608. For example, a user may open a properties or
other page associated with a selected message-based compo-
nent that has been added to the canvas. The property page may
include fields or other data entry elements for receiving infor-
mation, for example, from the user, specifying a message type
that the component is to receive. In response, the object con-
structor 224, or another module, such as the model builder
210, may add an input port to the block as presented on the
canvas. Similarly, the property page, or another property
page, may include fields and data entry elements for receiving
information that specifies a message type that a selected com-
ponent is to send. In response, an output port may be added to
the block as presented on the canvas. In this way, a user may
add a plurality of blocks representing message-based compo-
nents to the canvas, and provide these blocks with input and
output ports for receiving and sending messages.

The user may define message-based relationships among
the message-based components of the model as well as the
other components, as indicated at block 610. For example, the
user may define a message-based relationship graphically by
drawing a message-based connection between the input and

10

15

20

25

30

35

40

45

50

55

60

65

8

output ports of message-based blocks. More specifically, the
user may configure a given message-based component to
receive a particular message by drawing a connection from
the source of the message, such as the output port of another
message-based component, to the respective input port of the
given message-based component. Likewise, the user may
configure a selected message-based component to send a
message by drawing a connection from the respective output
port of the selected message-based component to the desti-
nation of the message. In response to the definition of mes-
sage-based relationships, e.g., by the user, the message-based
execution engine 216 may add the destination component to
a list of listeners for the respective message, as indicated at
block 612. Specifically, the execution engine 216 may create
alist of listeners for each message for which a message-based
relationship has been defined in the model. If a message-
based relationship is removed, for example, by the user delet-
ing a message-based connection between two message-based
blocks, the execution engine 216 may remove the destination
component from the list of listeners for that message.

In an embodiment, model components operating in
domains other than the message-based execution domain,
may be configured to send or receive messages. For example,
a user may draw a message-based connection between a
message-based block and a block operating in another
domain, such as the time-based domain, the state-based
domain, the dataflow domain, etc Likewise, a user may draw
a message-based connection from a block operating in
another domain to a message-based block.

FIGS. 7A and 7B are partial views of a schematic illustra-
tion of an exemplary graphical model 700. FI1G. 7 is a smaller
scale view indicating the positions of FIGS. 7A and 7B to
form a whole view. The model 700 may be constructed and/or
opened by a user. The model 700 may include a first time-
based portion 702, a second time-based portion 704, a state-
based portion 706, and a message-based portion 708. Each
portion may include a plurality of components, such as blocks
or subsystems. Specifically, the first time-based portion 702
may include a Constant block 710 and a Gain block 712. The
second time-based portion 704 may include an If block 714,
a first Subsystem 716, a second Subsystem 718, a Mux block
720, a Gain block 722, and an Outport block 724. The state-
based portion 706 may include an Idle state 726 and a Waiting
state 728. The message-based portion 708 may include a True
block 730, Message Generator block 732, a Message Buffer
block 734, and a Message Receive block 736.

The Message Generator block 732 may be configured to
have two input ports 740a, 74056, each associated with a
respective type of message that the Message Generator block
732 is interested in receiving. The Message Generator block
732 also may be configured to have one output port 742 that
is associated with a message type that the Message Generator
block may send. The Message Buffer block 734 may be
configured with an input port 744 and an output port 746, each
associated with a respective message type. The Message
Receive block 736 may be configured with an input port 748
and two output ports 750a, 75056, each associated with a
respective message type. In addition, the state-based portion
706 may be configured with a first input port 752qa that is
associated with a type of message, and a second input port
752b that is associated with a signal. The state-based portion
706 may be further configured with a first output port 754a
that is associated with a type of message, and a second output
port 7545 that is associated with a signal.

In an embodiment, the data type of a message payload may
specify the type of message.

US 9,304,840 B2

9

Message-based relationships may be established among
the time-based portions 702, 704, the state-based portion 706,
and the message-based portion 708. For example, a user may
connect various input and output blocks of the model 700
with message-based connections. In response, constructor
224 may create message object instances, and the execution
engine 214 may establish message-based relationships
among the respective portions or components of the model
700.

In an embodiment, before execution of the model 700, the
propagation engine 214 may analyze the construction and
configuration of the model 700 to determine whether, during
execution of the model 700, those blocks that are configured
to receive messages will receive the intended messages, as
indicated at block 614. In particular, the message-based
execution engine 216 and the model execution engine 208
may build an in-memory representation of the model 700,
such as an intermediate representation (IR). The IR may
include a plurality of nodes, that may represent the blocks of
the model 700, and edges that represent connections within
the model. The IR may also be annotated with additional
information, such as the types of messages that destination
blocks are configured to receive, the types of messages that
source blocks are configured to send, etc. The IR may be
created as part of a compilation stage that marks the start of
model execution. This compilation stage may include prepar-
ing data structures and evaluating parameters, configuring
and propagating block characteristics, determining block
connectivity, and performing block reduction and insertion.
In addition, one or more optimization techniques may be
applied to the IR. After the application of an optimization
technique, an additional IR may be generated. The propaga-
tion engine 214 may analyze one or more of these IRs.

The propagation engine 214 may evaluate this IR examin-
ing, for example, those elements of the IR that represent the
input ports of message-based and other blocks. The propaga-
tion engine 214 may determine the type of message that the
given message-block expects to receive on a subject input
port. The propagation engine 214 also may identify the
upstream block that is connected to the subject input port of
the given message-based block. The propagation engine 214
may determine the type of message issued by this upstream
block. In addition, the engine 214 may determine whether the
type of message defined for the output port of the source
component complies with the type of message defined for the
input port of the destination component. If a mismatch is
identified by engine 214, it may be reported. For example, an
error message or error report may be generated and presented,
for example on the display 120 for review by the user.

The model 700 may be simulated, e.g., executed or run. For
example, the model editor window may include a Run com-
mand button that may be selected by the user, e.g., with the
mouse 118. Alternatively, the user may enter a text-based run
command, for example, in a Command Line Interface (CLI),
or the model may be run programmatically.

In an embodiment, the model execution engine 208 inter-
faces with the time-based system 204, the state-based system
206, and the message-based system 202 to execute the entire
model 700, as indicated at block 616.

In an embodiment, the time-based modeling system 204
may create a sorted order of the time-based components of the
model 700, as indicated at block 618. The sorted order may
refer to the order in which to invoke block methods, during
execution of the model 700. Exemplary block methods for
time-based components may include an output method that
computes the output signals of the block based on its input
signals and its state, an update method that computes the

10

15

20

25

30

35

40

45

50

55

60

65

10

block’s states, and a derivatives method that computes the
derivatives of the block’s continuous states. Time-based com-
ponents that are configured to execute together may be iden-
tified as a group in the sorted order. For example, a time-based
subsystem may include a plurality of time-based blocks, and
the subsystem may be configured to run as an atomic sub-
system. In this case, all of the time-based blocks of the atomic
subsystem execute atomically as a group. The time-based
modeling system 204 may also define a simulation start time,
a simulation end time, and a plurality of time steps between
the start and end times. The size of the time steps may depend
on the particular solver being used to execute the model.

Input and output signals may be represented graphically in
the model or block diagram by arrow elements extending
between time-based blocks. Input and output signals repre-
sent quantities, for example, input and output data that change
over time during the execution of the model, and the quanti-
ties represented by the signals may be defined, and thus have
values, for all points in time between a model’s start time and
its stop time. Execution of a model may also be referred to as
simulation of the model.

In an embodiment, one or more initialization steps may be
performed before execution of the model begins. For
example, one or more state-based portions of the model may
execute one or more default transitions, as indicated at block
620. Initialization steps for message-based portions of the
model may involve typical operations, such as dequeuing a
waiting message.

For each time step of the simulation, which may begin with
the simulation start time, execution of model may proceed as
follows. The time-based modeling system 204 in cooperation
with the model execution engine 208 may begin executing the
time-based components of the model according to the sorted
order, as indicated at block 622. If an event that is a triggering
event for a state-based portion of the model occurs, the execu-
tion of the time-based components may be suspended, as
indicated at block 624. The triggered state-based portion may
be executed as an atomic unit, for example, by the state-based
modeling system 206 in cooperation with the model execu-
tion engine 208, as indicated at block 626. Upon completing
the execution of the state-based portion, the execution of the
time-based components may resume from the point in the
sorted-order at which execution had been suspended, as indi-
cated at block 628. For example, the model execution engine
208 may record where in the sorted order the execution was
suspended to execute the state-based portion.

In an embodiment, an input triggering event may occur
outside of a state-based portion, for example, by a time-based
or other component, but may be visible within the state-based
portion. Exemplary input trigger events may include an edge-
triggered input event and a function call, for example, from a
time-based component. An edge-triggered input event may be
configured to operate on a rising edge, a falling edge, or either
arising or falling edge. To operate as an input edge-triggered
input event, a signal from a time-based component may need
to cross zero, such as a changing from -1 to 1. In contrast, a
function-call input event may consist of an instantaneous flow
of control from a caller subsystem to a callee subsystem. A
triggering event for a state-based portion, whether it is an
edge, function call or other trigger, may not provide any input
data to the state-based portion, which the state-based portion
might otherwise use for processing, for example to generate
output data. Instead, the triggering event may operate as a
control signal that triggers execution of the state-portion, and
the state-based portion may operate upon input data that is
internal to the state-based portion, or that is received in other
ways besides a triggering event.

US 9,304,840 B2

11

If the triggering event for the state-based portion occurs
during the execution of a group of time-based components
that are configured to execute atomically, then the execution
of the entire group of time-based components may be com-
pleted. Further execution of time-based components may
then be suspended, and the execution of the triggered state-
based system performed.

If'a message is generated and sent, for example, during the
execution of time-based components according to the sorted
order, then the execution of time-based components may be
suspended, as indicated at block 630. The message-based
execution engine 216 may examine the list of listeners for the
respective message. The execution engine 216 may send the
message to the components on the list of listeners, as indi-
cated at block 632. If the destination component is triggered
by the receipt of the message, the execution engine 214 may
execute the destination component, as indicated at block 634.
The message-based execution engine 214 may also start a
timer associated with the generation of a message, and may
track the age of the message, as indicated at block 636. For
example, the engine 212 may use the clock 212 to operate one
or more timers. When the age of the message reaches its
maximum age, which may be indicated in message’s TTL
field 508, the message may be destroyed by the message-
based execution engine 216, as indicated at block 638. Each
message may thus persist for only a defined time period
during the execution of a model.

Upon completing the execution of the components trig-
gered by the message, the execution of the time-based com-
ponents may resume from the point in the sorted-order at
which execution had been suspended, as indicated at block
640.

It should be understood that the model execution flow
described in connection with one or more of steps 622 to 640
may be nested. For example, the execution of a state-based
portion may generate a message triggering the execution of a
message-based portion, which may trigger the execution of a
state-based portion, and so on.

It should be understood that a message may be sent to a
message-based component, a state-based component, a time-
based component, or some other component. In addition, the
message-based component, the state-based component, and
the time-based component may execute in response to the
received message.

The life-time of a message may depend on the semantics of
the message processing environment. A message imple-
mented using function-call semantics may get created and
consumed in the same time-step, thus resulting in a lifetime of
a single time-step. In the presence of queuing semantics,
messages can be produced in one time-step but wait in a
message queue for a number of time-steps before they are
consumed. In addition, the consumer can choose to process a
message without consuming the message, thus resulting in
messages with potentially infinite lifetime.

In an embodiment, instead of sending a message to a des-
tination component, the message-based execution engine 216
may notify a destination component that a message has been
created. In response, the destination component may retrieve
the message. [fthe destination component fails to retrieve the
message before its maximum age is reached, the message
may be destroyed before ever being retrieved.

In an embodiment, a message-based component may be
configured, upon sending a message, to expect a reply to its
message. Such a component may be configured to execute in
a synchronous or asynchronous manner. For example, the
component may be configured to execute synchronously in
which case the component, after sending its message, waits to

20

40

45

12

receive the reply before continuing with its execution. Alter-
natively, the component may be configured to execute asyn-
chronously in which case the component, after sending its
message, proceeds with its execution without waiting for the
reply.

In an embodiment, a state-based portion of the model may
be configured to execute during a time step even though no
triggering event for that state-based portion occurred during
the time step. More specifically, a state-based portion may
register for time-based triggering. If the model includes a
state-based portion that is registered for time-based trigger-
ing, and the state-based portion has not already executed
during the current time step, then the model execution engine
208 may execute the state-based portion, as indicated at block
642.

At this point, execution during the current time step may be
complete. If the current time step does not equal the simula-
tion end time, the current time step may be incremented and
the execution process may be repeated. This process, for
example steps 622 to 640, may be repeated for each time step
between the simulation start time and the simulation end time.

Referring to model 700 (FIG. 7), execution at each time
step may proceed as follows. Time-based Constant and Gain
blocks 710 and 712 may execute first as they may be the first
blocks in the sorted order. The signal output of Gain block 712
may be a trigger event for the state-based portion 706.
Accordingly, after Gain block 712 executes, execution of
other time-based components may be suspended, and the
state-based portion 706 may be executed. The Message
Receiver block 736 is configured to listen for a message from
the state-based portion 706 on input port 448. If the execution
of the state-based portion 706 results in the generation and
sending of this message, the message is received by Message
Receiver block 736 causing it to be executed. Next, the blocks
of the second time-based portion 704 execute following the
completion of execution of the Message Receiver block 736,
assuming it executes. Execution of the second time-based
portion 704 results in the generating and sending of a message
that is received by the Message Generator block 732. If the
second time-based portion 704 is configured as an atomic
subsystem, then all of its blocks, including Gain block 722
and Outport block 724 will execute before the Message Gen-
erator block 732 executes. On the other hand, if the second
time-based portion 704 is not configured as an atomic sub-
system, then the Message Generator block 732 may execute
before execution of the Gain block 722 and Outport block
724.

Ifthe execution of the Message Generator block 732 results
in the generation and sending of a message, then the Message
Buffer block 734 may execute, as it is triggered by such a
message. If the execution of the Message Buffer block 734
results in the generation and sending of a message, then the
state-based portion 706 may execute again.

At this point, execution of the current time step may be
complete. The model execution engine 208 may increment
the time step and execute the model 700 again, unless the
simulation end time has been reached.

Verification of a Message-Based Portion of a Model

In a further aspect of the invention, verification or other
testing may be performed on one or more message-based
portions of a model. In an embodiment, one or more verifi-
cation components may be provided to verify a message-
based portion of a model.

Message Observer

In an embodiment, the verification engine 218 may create
a first verification component, which may be referred to as an
observer, for verifying one or more messages in a model. The

US 9,304,840 B2

13

observer may be associated with a particular message-based
connection in a model, and may present information concern-
ing one or more of the messages that travel across that con-
nection during execution of the model. In an embodiment, the
observer component operates, at least in part, as a viewer to
present information concerning all of the messages that travel
across the selected connection during execution of the model.
The observer component may provide a message-based view
that includes the set of message participants, such as the
sources and destinations, the types of messages generated and
sent, and the payloads of those message. This collection of
information may be referred to as an interaction.

FIG. 8 is a schematic illustration of a graphical model 800
having executable semantics. The model 800 includes a plu-
rality of interconnected components. Specifically, the model
800 has two Inports 802, 804, a Sensors component 806, a
Bus component 808, a Controller component 810, an Actua-
tors component 812, and an Outport 814. The Inports 802,
804 and the Outport 814 may be time-based components,
while the Sensors, Bus, Controller, and Actuators compo-
nents 806, 808, 810, 812 may be message-based components.
In addition, the Bus component 808 and the Controller com-
ponent 810 may be connected by a message-based connection
816. Exemplary embodiments may allow one or more mes-
sages to be sent by the Bus component 808 and received by
the Controller component 810 during execution of the model
800 when the Bus component 808 is connected to the Con-
troller component 810 using a message-based connection. In
addition, the Controller component 810 may generate and
send one or more reply messages to the Bus component 808.

Suppose a user is interested in examining and verifying the
actual messages exchanged between the Bus component 808
and the Controller component 810 across the message-based
connection 816 during execution of the model 800. In this
case, the user may access an Observer component, such as
Observer component or block 820.

FIGS. 9A and B are partial views of a flow diagram illus-
trating exemplary processing in accordance with an embodi-
ment of the invention.

The verification engine 218 may receive a request for an
Observer block, as indicated at block 902. The verification
engine 218 may also receive a designation of one or more
message-based connections to which the requested Observer
block is to be associated, as indicated at block 904. In
response to the request, the verification engine 218 may coop-
erate with the constructor 224 to create an Observer compo-
nent, such as an object instance. In addition, the model builder
210 may present a corresponding Observer block, such as
block 820, in the graphical model 800, as indicated at block
906. A user may issue a request for an Observer block either
textually, e.g., by entering a command in a Command Line
Interface (CLI), or graphically, e.g., by selecting an Observer
block from a library browser. In an embodiment, a user may
select a message-based connection of interest, for example,
connection 816, such as with the mouse 118. In response, the
verification engine 218 may present one or more selectable
commands in a drop-down list, including an ‘Insert Observer
Block’ command. The user may select the ‘Insert Observer
Block’ command, thereby causing an Observer component to
be created that is associated with the selected message-based
connection.

In an embodiment, the Observer block 820 may include a
plurality of Graphical User Interface (GUI) elements. Spe-
cifically, the Observer block 820 may include corresponding
icons for the two or more message-based participants, e.g.,
the components connected by the message-based connection
to which the Observer block is associated. Here, the Observer

20

30

40

45

50

14

block 820 may include a first box element 822 representing
the Bus component 808, and a second box element 824 rep-
resenting the Controller component 810. The Observer block
820 may also include a line element, such as line elements
826, 828 extending from each box element 822, 824. Infor-
mation concerning messages exchanged between the Bus
component 808 and the Controller component 810 across
message-based connector 816 may be presented between the
line elements 826, 828 of the Observer block 820.

After issuing a request for an Observer block and associ-
ating it with a message-based connection of interest, the
model may be executed, as indicated at block 908. As part of
the execution of the model 800, the Bus component 808 may
generate and send one or more messages to the Controller
component 810, and the Controller component 810 may
respond with one or more reply messages. Information con-
cerning this exchange of messages may be presented by the
Observer block 820.

Specifically, the verification engine 218 may monitor the
sending and receiving of messages across the selected mes-
sage-based connector 86, as indicated at block 910. For
example, the verification engine 218 may interface with the
message-based execution engine 216. In addition, as each
such message is generated and sent, the verification engine
218 may add an entry to the Observer block for that message,
as indicated at block 912. The verification engine 218 may
also include within each entry one or more information ele-
ments concerning the respective message, as indicated at
block 914. For example, the verification engine 218 may add
an arrow element to the Observer block 820 for each actual
message. An arrow pointing from line element 828, which
extends from box element 822, to line element 830, which
extends from box element 824, may represent a message sent
from the Bus component 808 to the Controller component
810. An arrow pointing from line element 830 to line element
828 may represent a reply message sent from the Controller
component 810 to the Bus component 808. The verification
engine 218 may also include a data element at each entry that
indicates the type of message sent, and that includes informa-
tion from the message’s payload. The entire payload or a
portion thereof may be included in the entry’s data element.

In addition, the verification engine 218 may include one or
more time elements in the entry for a given message. The one
or more time elements may contain information relating to
the timing characteristics of the message. In particular, a
message may be sent by a source component at a particular
time, which may be denoted as the TimeSent, T, and may be
received by a destination component at a particular time,
which may be denoted as TimeReceived, T,. One or more of
these timing characteristics, such as T and/or T, may be
included in the entry of the Observer block 820 by the veri-
fication engine 218.

The timing characteristics of a message may be determined
by the verification engine 218 in cooperation with the mes-
sage-based execution engine 216. For example, system 202
may receive a clock signal from system clock 212, and the
message-based execution engine 216 may use this clock sig-
nal to identify one or more timing characteristics of messages.

As illustrated in the Observer block 820, four messages
were generated and sent across the message-based connec-
tion 816 during execution of the model 800, as indicated by
arrow elements 830-833. All four messages were sent by the
Bus component 808 to the Controller component 810 as indi-
cated by the arrow elements 830-833. Furthermore, each of
the four messages may be ‘Altitude’ type messages, and may
carry the following payloads: 10,000°, <20,000’, ‘30,000,
and °40,000’. In addition, the four messages were received by

US 9,304,840 B2

15

the Controller component 810 at the following times: 12 s, 18
s,20s,and 21.4 s, as indicated by timing elements 834-837 of
the Observer block 820.

The verification engine 218 may also receive a request for
a report of the messaging information presented by the
Observer block 820, as indicated at block 916 (FIG. 9B). For
example, a user may request such a report. The verification
engine 218 may provide the information to the report genera-
tor 220, as indicated at block 918, and the report generator
220 may create a report, as indicated at block 920. The report
generator 220 may provide the report to an output device,
such as the display 120, a printer, etc., as indicated at block
922. The report generator 220 may also or alternatively save
the report in memory, as indicated at block 924.

The Observer block 820 may be docked, that is fixed, to the
model 800. The Observer block 820 also may be visually
associated with the message-based connection 816 through a
line element (not shown) connecting the Observer block 820
to the connection 816. Alternatively, the Observer block 820
may be a floating block. A floating block is not locked to any
particular location in the model 800, but may be moved
around the canvas, for example, by the user. In this case, an
icon, such as a glasses element 840, may be placed near the
connection 816 to indicate that an Observer block is associ-
ated with this message-based connection.

Message Source Block

The verification engine 218 may create a second verifica-
tion block referred to as a Message Source block. The Mes-
sage Source block may be connected to a destination compo-
nent of a model through one or more message-based
connections. The Message Source block may be used to
define one or more messages, and these messages may be sent
from the Message Source block to the destination block dur-
ing execution of the model.

FIG. 10 is a schematic illustration of a graphical model
1000 having executable semantics. The model 1000 includes
a Controller component 1002, an Actuators component 1004,
and an Outport component 1006. The Controller and Actua-
tors components 1002, 1004 may be message-based blocks,
and the Outport component 1006 may be a time-based block.
Suppose the model 1000 is intended to be used in a larger
model in which the Controller component 1002 will receive
one or more messages. Suppose further, that a user wants to
verify the operation of the model 1000 when the Controller
component 1002 receives these one or more messages. The
user may add a Message Source component or block to the
model 1000, such as Message Source block 1008, and may
connect it to the Controller component 1002 using a message-
based connection 1010. A Generator block 1012 that is asso-
ciated with the Message Source block 1008 also may be
created by the verification engine 218. In an embodiment, the
Message Source block 1008 and the Generator block 1012
may be combined into a single block, which may be referred
to as a Message Source block. A Message Source block may
be used to simulate the one or more messages that the Con-
troller component 1002 would have received as part of the
larger model. In this way, a user may test the operation of the
Controller component 1002 and/or the model 1000.

FIG. 11 is a flow diagram of exemplary processing that can
be used in accordance with an embodiment of the invention.

The verification engine 218 may receive a request for a
Message Source block, as indicated at block 1102. In
response, the constructor 224 may create an instance of a
Message Source block, and the model builder 210 may
present a Message Source block and a Generator block on the
canvas, as indicated at block 1104. The verification engine
218 may also receive a designation of one or more destination

10

15

20

25

30

35

40

45

50

55

60

65

16

blocks that are to receive messages generated and sent by the
Message Source block, as indicated at block 1106. The veri-
fication engine 218 may provide one or more GUI elements
within the Generator block 1012 for receiving information
that defines one or more messages to be generated and sent by
the Message Source block 1008. For example, the verification
engine 218 may include a system boundary box element
1014, and a Controller box element 1016 in the Generator
block 1012. The verification engine 218 also may include a
first line element 1018 extending from the system boundary
box element 1014, and a second line element 1020 extending
from the Controller box element 1016. Information defining
one more messages may be entered, for example by the user,
between the first and second line elements 1018, 1020. For
example, a user may draw an arrow element, e.g., using the
mouse 118, from first line element 1018 to the second line
element 1020, thereby defining a first message to be gener-
ated and sent to the Controller component 1002 during execu-
tion of the model 1000. The user may enter information
specifying the type of message, its lifetime, and its payload.
The user may also specify one or more timing characteristics,
such as when each message is to be sent. For example, the user
may indicate that a respective message is to be generated and
sent during each time step of the model’s execution. Alterna-
tively, the user may specify that a respective message is to be
sent once during the execution of a model, such as during a
designated particular time step. As the user enters information
defining one or more messages in the Message Source block,
this information may be received by the verification engine
218, as indicated at block 1108.

For example, a first arrow element 1022 may be added to
define a first message of type ‘Altitude’ having a payload of
°10,000’, and a message send time of 12 s. A second arrow
element 1023 may be added to define a second message of
type “Altitude’ having a payload of ‘20,000°, and a message
send time of 18 s. A third arrow element 1024 may be added
to define a third message of type ‘Altitude’ having a payload
ot “30,000’, and a message send time of 20 s. A fourth arrow
element 1025 may be added to define a fourth message of type
‘Altitude’ having a payload of ‘40,000°, and a message send
time of 21.4 s. A fifth arrow element 1026 may be added to
define a fifth message of type ‘Anomaly’ with a message send
time of 22 s.

Once the desired messages have been defined, the model
1000 may be executed, as indicated at block 1110. During
execution of the model 1000, the verification engine 218 may
cooperate with the execution engine 216 to cause the one or
more messages defined in the Generator block 1012 to be
generated and sent by the Message Source block 1008 at the
specified times, where the messages are of the specified type
and carry the specified payloads, as indicated at block 1112.
One or more of these messages may trigger execution of the
Controller component 1002, as indicated at block 1114.

Message generation time may be specified in absolute
terms, for example, from the start of the simulation of a
model. In addition, message generation time may be specified
relative to a preceding message.

Message Sink Block

The verification engine 218 may create a third verification
block referred to as a Message Sink block. The Message Sink
block may be connected to a source component of a model
through one or more message based connections, and may
present information concerning one or more messages gen-
erated by the source component during execution of the
model. In an embodiment, the Message Sink block operates

US 9,304,840 B2

17

as a viewer to present information concerning all of the mes-
sages generated by the source component during execution of
the model.

FIG. 12 is a schematic illustration of a graphical model
1200 having executable semantics. The model 1200 includes
a plurality of interconnected components. Specifically, the
model 1200 has two Inports 1202, 1204, a Sensors compo-
nent 1206, and a Bus component 1208. The Inports 1202,
1204 may be time-based blocks, and the Sensors and Bus
components 1206, 1208 may be message-based components.
Suppose the model 1200 is intended to form part of a larger
model, and that the Bus component 1208 is intended to gen-
erate and send one or more messages to one or more compo-
nents of this larger model. Suppose further that a user wants to
verify the messages being generated and sent by the Bus
component 1208. The user may add a Message Sink block,
such as Message Sink block 1210, to the model 1200. The
user may also connect the Message Sink block 1210 to the
Bus component 1208 with a message-based connection 1212.
A Message Viewer block 1212 that is associated with the
Message Sink block 1210 also may be created by the verifi-
cation engine 218. In an embodiment, the Message Sink
block 1210 and the Message Viewer block 1212 may be
combined into a single block, which may be referred to as a
Message Sink block. The Message Viewer block 1212 may be
an instance of an Observer block.

FIGS. 13A and 13B are partial views of a flow diagram
illustrating exemplary processing that can be used in accor-
dance with an embodiment of the invention.

The verification engine 218 may receive a request for a
Message Sink block, as indicated at block 1302. The verifi-
cation engine 218 may also receive a designation of one or
more message sources for the Message Sink block, as indi-
cated atblock 1304. In response to the request, the constructor
224 may create a Message Sink object instance, and the
model builder 210 may present a corresponding Message
Source block and a Message Viewer block in the graphical
model 1200, as indicated at block 1306. A user may issue a
request for a Message Source block either textually, e.g., by
entering a command in a Command Line Interface (CLI), or
graphically, e.g., by selecting it from a library browser.

In an embodiment, the Message Viewer block 1212 may
include a plurality of GUI elements. Specifically, the Mes-
sage Viewer block 1212 may include a first box element 1214
for the message source, i.e., the Bus component 1208, and a
second box element 1216 for a system boundary. The Mes-
sage Viewer block 1212 may also include a first line element
1218 extending from the first box element 1214, and a second
line element 1220 extending from the second box element
1216. Information concerning messages generated and sent
by the Bus component 1208 may be presented between the
firstand second lines 1218, 1220 of the Message Viewer block
1212.

After requesting the Message Sink block 1210 and con-
necting it to the source of interest, the model 1200 may be
executed, as indicated at block 1308. As part of the execution
of the model 1200, the Bus component 1208 may generate
and send one or more messages.

The verification engine 218 may monitor the generating
and sending of messages by the Bus component 1208, as
indicated at block 1310. In addition, as each such message is
generated and sent, the verification engine 218 may add an
entry to the Message Viewer block 1212 for that message, as
indicated at block 1312. The verification engine 218 may also
include one or more information elements for each entry
added to the Message Viewer block 1212, as indicated at
block 1314. These information elements may provide addi-

35

40

45

18

tional information on the messages. Specifically, each entry
may include an arrow element extending from the first line
element 1218 to the second line element 1220, thereby indi-
cating that the message was sent by the Bus component 1208.
Each entry may also identify the type of message, and may
include information from the message’s payload. The entire
payload or a portion thereof may be included in the respective
entry in the Message Viewer block 1212. One or more entries
may also include one or more time elements that provide
information concerning the timing characteristics of the
respective message, such as the time the message was sent,
T, and/or the time the message was received, T.

For example, a first arrow element 1222 may be presented
in the Message Viewer block 1212 during execution of the
model 1200 by the verification engine 218 indicating that a
first message of type “Altitude’ having a payload of <10,000”,
was sent by the Bus component 1208 at Time 12 s. A second
arrow element 1223 may be presented indicating that a sec-
ond message of type ‘Altitude’ having a payload of <20,000”,
was sent at time 18 s. A third arrow element 1224 may be
added indicating that a third message of type ‘Altitude’ having
apayload of ©30,000’, was sent at time of 20 s. A fourth arrow
element 1225 may be presented indicating that a fourth mes-
sage of type ‘Altitude’ having a payload of ‘40,000’, was sent
at time of 21.4 s.

The verification engine 218 may also receive a request for
a report of the message information captured by the Message
Sink block 1210 and/or presented in the Message Viewer
block 1212, as indicated at block 1316 (FIG. 13B). For
example, a user may request such a report. The verification
engine 218 may pass the information to the report generator
220, as indicated at block 1318, and the report generator 220
may create a report, as indicated at block 1320. The report
generator 220 may provide the report to an output device,
such as the display 120, a printer, etc., as indicated at block
1322. The report generator 220 may also or alternatively save
the report in memory, as indicated at block 1324.

Message Scenario Block

The verification engine 218 may create a fourth verification
block referred to as a Scenario block. The Scenario block may
be connected to one or more message-based connections. In
addition, a Scenario block may include a specification of one
or more valid and/or invalid interactions. That is, the specifi-
cation may define the messages that are expected to be
exchanged on the one or more message-based connections
that have been associated with the Scenario block. A set of
messages in a particular order may be referred to as a trace.
The Scenario block may also include one or more constraints
on the expected messages. When the model is executed, the
verification engine 218, based on information contained in
the Scenario block, may determine whether the messages
actually generated during execution are equivalent to the
expected messages and/or satisfy the one or more constraints.
If not, the verification engine 218 may take one or more
actions, such as suspending the execution of the model, stop-
ping execution of the model, issuing an alert, outputting the
non-conforming message or trace, generating a new scenario
block whose specification corresponds to the non-conform-
ing message or trace, etc. The Scenario block may also dis-
play information concerning the actual messages generated
during execution of the model.

FIG. 14 is a schematic illustration of a graphical model
1400 having executable semantics. The model 1400 includes
a plurality of interconnected components. Specifically, the
model 1400 has two Inports 1402, 1404, a Sensors compo-
nent 1406, a Bus component 1408, a Controller component
1410, an Actuators component 1412, and an Outport 1414.

US 9,304,840 B2

19

The Inports 1402, 1404 and the Outport 1414 may be time-
based blocks, while the Sensors, Bus, Controller, and Actua-
tors components 1406, 1408, 1410, 1412 may be message-
based blocks. The Bus component 1408 may be connected to
the Sensors component 1406 by two message-based connec-
tions 1416, 1418. The Controller component 1410 may be
connected to the Bus component 1408 by a message-based
connection 1419. The Actuators component 1412 may be
connected to the Controller component 1410 by five mes-
sage-based connections 1420-1424.

FIGS. 15A and 15B are partial views of a flow diagram
illustrating exemplary processing that can be used in accor-
dance with an embodiment of the invention.

The verification engine 218 may receive a request for one
or more Scenario blocks to be added to a model, as indicated
at block 1502. Suppose, for example, a user is interested in
evaluating the manner in which the Bus component 1408 and
the Controller component 1410 process messages. The user
may request a first Scenario block to evaluate the messages
generated and received by the Bus component 1408, and a
second Scenario block to evaluate the messages generated
and received by the Controller component. The user may
issue a request for a Scenario block graphically, textually or
through a combination of textual and graphical inputs to the
high-level modeling environment. For example, a user may
select a Scenario block from a library browser.

In response, the constructor 224 may create an instance of
a Scenario object, and the model builder 210 may add a
Scenario block to the model canvas displaying the model, as
indicated at block 1504. Specifically, the verification engine
218 may add first and second Scenario blocks 1426, 1428 to
the model 1400. The verification engine 218 may also receive
a designation of one or more message-based components to
be associated with each Scenario block, as indicated at block
1506. For example, a user may associate the first Scenario
block 1426 with the messages corresponding to message-
based connections 1416, 1418, and 1419. The user may also
associate the second Scenario block 1428 with the messages
corresponding to message-based connections 1419 and 1422-
1424.

The verification engine 218 may receive information speci-
fying an interaction, as indicated at block 1508. That is, the
verification engine 218 may receive information concerning
the messages expected to be generated and sent during model
execution. In an embodiment, a Scenario block may include a
plurality of GUI elements for receiving information specify-
ing an interaction. For example, because it is associated with
message-based connections 1416, 1418, and 1419, the first
Scenario block 1426 may include a Sensors box element
1430, a Bus box element 1432, and a Controller box element
1434. A line element, such as line elements 1436, 1438, and
1440 may extend from each box element 1430, 1432, and
1434, respectively. A user may specify one or more expected
messages by drawing arrow elements between line elements
1436, 1438, and 1440. The specification may include the type
of' message, its payload, and its timing characteristics, among
other information. For example, the user may specify the
sending of an Altitude type message from the Sensors com-
ponent 1406 to the Bus component, as indicated by arrow
element 1442, and the sending of an Altitude type message
from the Bus component 1408 to the Controller component
1410, as indicated by arrow element 1444.

The user may also specify one or more constraints for the
expected messages. For example, the user may specify that
the second altitude message 1444 is to be received by the
Controller component 1410 within 1.0 seconds of when the
Sensors component sends the first altitude message 1142. The

10

25

30

40

45

20

specification of this timing constraint may be performed by
the user at the first Scenario block 1426. For example, the user
may specify a time sent, Tg, value of ‘timeNow’ for the
sending of the first altitude message 1442 by the Sensors
component 1406 at the tail of the arrow element 1442 where
it joins line element 1436. The user may also specify a time
receive, Tz, value of ‘timeNow<=1 sec.” for the receipt of the
second altitude message 1444 by the Controller component
1410 at the head of arrow element 1444 where it joins line
element 1440. Alternative embodiments may allow con-
straints to be programmatically specified by system 100.

The user may specify that two anomaly messages are
expected as represented by arrow elements 1446 and 1448,
and that the second anomaly message 1448 should be
received by the Controller component 1434 within 0.1 sec-
onds of when the first anomaly message is sent by the Sensors
component 1406.

It should be understood that a determined order of the
messages may be specified, for example, by a user or pro-
grammatically. The determined order may be specified within
the Message Scenario block, and may be a sequential order.

A Scenario block may receive additional constraints
besides or in addition to constraints concerning the ordering
and timing of messages.

The information specified in a Message Scenario block,
such as the source and destination components, message
types, payloads, and constraints, may be referred to as an
interaction. Other techniques besides or in addition to the use
of arrow and other GUI elements may be used to specify an
interaction or one or more parts thereof, for example one or
more textual inputs may be used.

The second Scenario block 1428 may include a Bus box
element 1450, a Controller box element 1452, and an Actua-
tors box element 1454, since it is associated with message-
based connections 1419 and 1422-1424. A line element, such
as line elements 1456, 1458, and 1460, may extend from each
box element 1450, 1452, and 1454, respectively. Between
line elements 1456, 1458, and 1460, the user may draw arrow
elements representing the messages expected to be sent by the
Bus component 1408 and received at the Controller compo-
nent 1410, and the order of those messages. The user may
specify a determined order, such as a sequential order, of
message occurrence textually and/or graphically, for
example, by drawing the arrow elements that represent those
messages in a vertically descending order. That is, the mes-
sage represented by a first arrow element is expected to occur
before a second message represented by a second arrow ele-
ment, if the first arrow element is drawn above the second
arrow element in the Scenario block.

As shown in the second Scenario block 1428, a user may
draw two arrow elements between lines 1456 and 1458 asso-
ciated with the Bus and Controller components 1408, 1410.
Specifically, the user may draw a first arrow element 1462
representing an Altitude type message with a payload of
10,000’ and a second arrow element 1464 representing an
Anomaly type message. Following this sequence of messages
between the Bus and Controller components 1408, 1410, the
user may draw arrow elements representing expected mes-
sages between the Controller and Actuators components
1410, 1412. Specifically, the user may draw a third arrow
element 1466 representing a ‘DumpFuel’ type message, a
fourth arrow element 1468 representing a ‘ReleaseStage’ type
message, and a fifth arrow element 1470 representing a
‘ReleaseTank’ type message.

The verification engine 218 may also receive one or more
actions that are to be performed if an actual message occurs
during the execution of the model 1400 that is not equivalent

US 9,304,840 B2

21

to the specified interaction, or to one or more constraints
specified in a Scenario block, as indicated at block 1510. For
example, a user may open a property page (not shown) asso-
ciated with a Scenario block, and may specify a desired
action, e.g., by selecting one or more radio buttons or check-
boxes. Actions that may be specified may include stopping
the execution of the model, pausing or suspending its execu-
tion, until released, e.g., by the user, logging an error, output-
ting the one or more actual messages, generating a new Sce-
nario block whose specification is the one or more actual
messages and using the new Scenario block in the model,
and/or presenting an alert. The particular action or actions
may be user-settable, for example, through a property page or
dialog of the Scenario block.

After the one or more Scenario blocks have been config-
ured as desired, e.g., by the user or programmatically, the
model 1400 may be executed, as indicated at block 1512. As
part of the execution of the model 1400, the Sensors, Bus, and
Controller components 1406, 1408, 1410 may generate and
send one or more messages. The verification engine 218 may
monitor the sending and receiving of messages across the
message-based connections that have been associated with
the one or more Scenario blocks, as indicated at block 1514.
In addition, the verification engine 218 may compare the
actual messages that occur during execution of the model
1400 with the interaction contained by the one or more Sce-
nario blocks, as indicated at block 1516 (FIG. 15B). The
verification engine 218 may determine whether an actual
message occurs that is not equivalent to an expected message
as specified by the interaction, as indicated at decision block
1518. If an actual message is not equivalent, the verification
engine 218 may perform the specified action, as indicated by
No arrow 1520 leading to block 1522. The verification engine
218 may also determine whether an actual message fails to
satisfy a constraint specified through a Scenario block, as
indicated by decision block 1522. If an actual message does
not satisfy a constraint, the verification engine 218 may per-
form the specified action, as indicated by No arrow 1524
leading to block 1526. It should be understood that the same
action may be performed. If the actual messages occur
according to the determined order, and satisfy any other
specified constraints, the model 1400 may execute to comple-
tion, as indicated by Yes arrows 1528, 1530 leading to block
1532. The specified action may include or may be allowing
the model to continue execution.

It should be understood that other or different GUI ele-
ments may be utilized or supported by one or more of the
verification blocks. For example, an additional GUI element
may be provided for the Scenario blocks through which a
series of looping messages may be specified by a user.

In an embodiment, the high-level modeling environment
200 may include one or more code generation modules for
generating code from a model, such as C code, C++ code,
Hardware Description Language (HDL) code, etc. The code
generation module may generate code for one or more veri-
fication blocks, such as the Scenario blocks. If the code for the
Scenario block detects an invalid trace, for example, it may
generate an error message that could be read by another code
module, which in turn may take some predetermined action,
such as resetting the deployed systems, or sending a signal to
a processing unit.

The generated code, moreover, may be used in a deployed
system, that may be a real-world system that is physically
separate from the data processing system 100 on which the
high-level modeling environment 200 operates. Exemplary
deployed systems include controllers, such as Engine Control

10

15

20

25

30

35

40

45

50

55

60

65

22

Units (ECUs) used in cars and trucks, Anti-lock Braking
Systems (ABS), aircraft flight control systems, etc.

Suitable code generation models include the Real Time
Workshop code generator and the Simulink HDL Coder prod-
ucts from The MathWorks, Inc.

The foregoing description of embodiments is intended to
provide illustration and description, but is not intended to be
exhaustive or to limit the invention to the precise form dis-
closed. Modifications and variations are possible in light of
the above teachings or may be acquired from a practice of the
invention. For example, while a series of acts has been
described above with respect to the flow diagrams, the order
of the acts may be modified in other implementations. Fur-
ther, non-dependent acts may be performed in parallel. Also,
the term “user”, as used herein, is intended to be broadly
interpreted to include, for example, a computer or data pro-
cessing system (e.g., system 100) or a user of a computer or
data processing system, unless otherwise stated.

Further, certain embodiments of the invention may be
implemented as logic that performs one or more functions.
This logic may be hardware-based, software-based, or a com-
bination of hardware-based and software-based. Some or all
of the logic may be stored in one or more tangible non-
transitory computer-readable storage media and may include
computer-executable instructions that may be executed by a
computer or data processing system, such as system 100. The
computer-executable instructions may include instructions
that implement one or more embodiments of the invention.
The tangible non-transitory computer-readable storage media
may be volatile or non-volatile and may include, for example,
flash memories, dynamic memories, removable disks, and
non-removable disks.

No element, act, or instruction used herein should be con-
strued as critical or essential to the invention unless explicitly
described as such. Also, as used herein, the article “a” is
intended to include one or more items. Where only one item
is intended, the term “one” or similar language is used. Fur-
ther, the phrase “based on” is intended to mean “based, at least
in part, on” unless explicitly stated otherwise.

The foregoing description has been directed to specific
embodiments of the present invention. It will be apparent,
however, that other variations and modifications may be made
to the described embodiments, with the attainment of some or
all of their advantages. For example, one or more message-
based blocks, such as a verification block, may be configured
through a command line Application Programming Interface
(API) that may be provided by the message-based object
constructor or the verification engine. Therefore, it is the
object of the appended claims to cover all such variations and
modifications as come within the true spirit and scope of the
invention.

What is claimed is:
1. A method comprising:
accessing, from a memory, an executable graphical model
having a plurality of graphical components, the plurality
of graphical components exchanging messages during
execution of the graphical model, the messages
include payloads having one or more data values that
remain fixed while the messages travel between
respective pairs of the graphical components, and
persist for a determined time interval during execution
of the graphical model; and
executing the graphical model by a processor coupled to
the memory, the executing including:
generating a given message by a first graphical compo-
nent of the graphical model;

US 9,304,840 B2

23

receiving the given message at a second graphical com-
ponent of the graphical model, the second graphical
component being a time-based graphical component
or a state-based graphical component; and
consuming, by the second graphical component of the
graphical model, the given message, where the con-
suming the given message
includes processing at least one of the one or more
data values of the given message, and
is performed before an expiration of the determined
time interval of the given message.

2. The method of claim 1 wherein the given message is
received at a message queue associatd with the second graphi-
cal component, and the consuming the given message further
includes retrieving the given message from the message
queue.

3. The method of claim 1 wherein

the graphical model executes over a plurality of time steps

between a start time and an end time, and

the determined time interval of the given message is one or

more time steps between the start time and the end times.

4. The method of claim 1 further comprising:

sending the given message to the second graphical compo-

nent, wherein

execution of the second graphical component is trig-
gered upon the sending of the given message or upon
the receiving of the given message.

5. The method of claim 1 further comprising:

providing the second graphical component with a message

port; and

specifying a message-based connection between the first

graphical component and the message port of the second
graphical component, wherein the message-based con-
nection is specified graphically.

6. The method of claim 1 wherein execution of the first
graphical component proceeds synchronously or asynchro-
nously after the given message is generated.

7. The method of claim 1 further comprising:

sending the given message to the second graphical compo-

nent; and

receiving at the first graphical component a reply to the

given message, wherein execution of the first graphical

component:

pauses upon the sending of the given message to the
second graphical component, and

resumes upon the first graphical component receiving
the reply to the given message.

8. The method of claim 1 further comprising:

sending the given message to the second graphical compo-

nent, wherein execution of the first graphical component
continues without pausing upon the sending of the given
message to the second graphical component.

9. The method of claim 1 further comprising:

graphical components, the plurality of graphical compo-

nents exchanging messages

generating code from at least a portion of the executable

graphical model.

10. The method of claim 9 wherein the code is source code.

11. The method of claim 9 wherein the code is C code, C++
code, or Hardware Description Language (HDL) code.

12. The method of claim 9 further comprising:

deploying the code to a physical system; and

running the code by the physical system.

13. A method comprising:

accessing, from a memory, an executable graphical model

having a plurality of graphical components, the plurality

10

15

20

25

30

35

40

45

50

55

60

65

24

of graphical components configured to exchange mes-

sages during execution of the graphical model, the mes-

sages

include payloads having one or more data values that
remain fixed while the messages travel between
respective pairs of the graphical components, and

persist for a determined time interval during execution
of the graphical model; and

generating code from at least a portion of the executable

graphical model, where the code includes instructions

for

generating a given message by a first entity, the first
entity corresponding to a first graphical component of
the executable graphical model;

receiving the given message at a second entity, the sec-
ond entity corresponding to a time-based graphical
component or a state-based graphical component of
the executable graphical model; and

processing at least one of the one or more data values of
the given message by the second entity before an
expiration of the determined time interval ofthe given
message.

14. The method of claim 13 further comprising:

deploying the code to a target device; and

running the code at the target device.

15. The method of claim 13 wherein the code is source
code.

16. The method of claim 13 wherein the code is C code,
C++ code, or Hardware Description Language (HDL) code.

17. The method of claim 13 wherein the code further
includes instructions for

creating a message queue; and

storing the given message at the message queue.

18. One or more non-transitory computer-readable media
comprising program instructions, the program instructions
when executed by one or more processors operable to:

access, from a memory, an executable graphical model

having a plurality of graphical components, the plurality

of graphical components exchanging messages during

execution of the graphical model, the messages

include payloads having one or more data values that
remain fixed while the messages travel between
respective pairs of the graphical components, and

persist for a determined time interval during execution
of the graphical model; and

execute the graphical model by the one or more processors,

the executing including:
generating a given message by a first graphical compo-
nent of the graphical model;
receiving the given message at a second graphical com-
ponent of the graphical model, the second graphical
component being a time-based graphical component
or a state-based graphical component; and
consuming, by the second graphical component of the
graphical model, the given message, where the con-
suming the given message
includes processing at least one of the one or more
data values of the given message, and
is performed before an expiration of the determined
time interval of the given message.

19. The one or more non-transitory computer-readable
media of claim 18 wherein the given message is received at a
message queue associated with the second graphical compo-
nent, and the consuming the given message further includes
retrieving the given message from the message queue.

20. The one or more non-transitory computer-readable
media of claim 18 wherein execution of the first graphical

US 9,304,840 B2

25

component proceeds synchronously or asynchronously after
the given message is generated.

21. The one or more non-transitory computer-readable
media of claim 18 further comprising instructions to:

send the given message to the second graphical compo-
nent; and

receive at the first graphical component a reply to the given
message, wherein execution of the first graphical com-
ponent:
pauses upon the sending of the given message to the

second graphical component, and
resumes upon the first graphical component receiving
the reply to the given message.
22. The one or more non-transitory computer-readable
media of claim 18 further comprising instructions to:
send the given message to the second graphical compo-
nent, wherein execution of the first graphical component
continues without pausing upon the sending of the given
message to the second graphical component.
23. An apparatus comprising:
a memory storing an executable graphical model having a
plurality of graphical components, the plurality of
graphical components exchanging messages during
execution of the graphical model, the messages
include payloads having one or more data values that
remain fixed while the messages travel between
respective pairs of the graphical components, and

persist for a determined time interval during execution
of the graphical model; and
a processor coupled to the memory, the processor config-
ured to execute the graphical model, where the processor
is further configured, during execution of the graphical
model, to:
generate a given message by a first graphical component
of the graphical model;

receive the given message at a second graphical compo-
nent of the graphical model, the second graphical
component being a time-based graphical component
or a state-based graphical component; and

consume, by the second graphical component of the
graphical model, the given message, where the con-
suming the given message

includes processing at least one of the one or more data
values of the given message, and

is performed before an expiration of the determined time
interval of the given message.

24. The apparatus of claim 23 wherein the given message is
received at a message queue associated with the second
graphical component, and the consuming the given message
further includes retrieving the given message from the mes-
sage queue.

25. The apparatus of claim 23 wherein the processor is
further configured to proceed with execution of the first
graphical component synchronously or asynchronously after
the given message is generated.

26. The apparatus of claim 23 wherein the processor is
further configured to:

send the given message to the second graphical compo-
nent; and

receive at the first graphical component a reply to the given
message, wherein execution of the first graphical com-
ponent:
pauses upon the sending of the given message to the

second graphical component, and
resumes upon the first graphical component receiving
the reply to the given message.

5

10

20

25

30

35

40

45

60

65

26

27. The apparatus of claim 23 wherein the processor is
further configured to:
send the given message to the second graphical compo-
nent, wherein execution of the first graphical component
continues without pausing upon the sending of the given
message to the second graphical component.
28. One or more non-transitory computer-readable media
comprising program instructions, the program instructions
when executed by one or more processors operable to:
access, from a memory, an executable graphical model
having a plurality of graphical components, the plurality
of graphical components configured to exchange mes-
sages during execution of the graphical model, the mes-
sages
include payloads having one or more data values that
remain fixed while the messages travel between
respective pairs of the graphical components, and

persist for a determined time interval during execution
of the graphical model; and
generate, by the one or more processors coupled to the
memory, code from at least a portion of the executable
graphical model, where the code includes instructions
for
generating a given message by a first entity, the first
entity corresponding to a first graphical component of
the executable graphical model;

receiving the given message at a second entity, the sec-
ond entity corresponding to a time-based graphical
component or a state-based graphical component of
the executable graphical model; and

processing at least one of the one or more data values of
the given message by the second entity before an
expiration of the determined time interval ofthe given
message.
29. The one or more non-transitory computer-readable
media of claim 28 further comprising program instructions
to:
deploy the code to a target device; and
run the standalone executable code at the target device.
30. The one or more non-transitory computer-readable
media of claim 28 wherein the code is source code.
31. The one or more non-transitory computer-readable
media of claim 28 wherein the code is C code, C++ code, or
Hardware Description Language (HDL) code.
32. The one or more non-transitory computer-readable
media of claim 28 wherein the code further includes instruc-
tions for
creating a message queue; and
storing the given message at the message queue.
33. An apparatus comprising:
a memory storing an executable graphical model having a
plurality of graphical components, the plurality of
graphical components configured to exchange messages
during execution of the graphical model, the messages
include payloads having one or more data values that
remain fixed while the messages travel between
respective pairs of the graphical components, and

persist for a determined time interval during execution
of the graphical model; and

a processor coupled to the memory, the processor config-
ured to
generate code from at least a portion of the executable

graphical model, where the code includes instructions

for

generating a given message by a first entity, the first
entity corresponding to a first graphical component
of the executable graphical model;

US 9,304,840 B2
27

receiving the given message at a second entity, the
second entity corresponding to a time-based
graphical component or a state-based graphical
component of the executable graphical model; and
processing at least one of the one or more data values 5
of the given message by the second entity before an
expiration of the determined time interval of the
given message.
34. The apparatus of claim 33 wherein the processor is
further configured to: 10
deploy the code to a target device; and
run the code at the target device.
35. The apparatus of claim 33 wherein the code is source
code.
36. The apparatus of claim 33 wherein the code is C code, 15
C++ code, or Hardware Description Language (HDL) code.
37. The apparatus of claim 33 wherein the code further
includes instructions for
creating a message queue; and
storing the given message at the message queue. 20

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,304,840 B2 Page 1of1
APPLICATION NO. : 14/163147

DATED s April 5, 2016

INVENTOR(S) : Hidayet T. Simsek et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims:

Claim 2, Col. 23, line 13 should read:
received at a message queue associated with the second graphi-

Claim 3, Col. 23, line 22 should read:
more time steps between the start time and the end time.

Signed and Sealed this
Fourth Day of October, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

